Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.319
Filtrar
1.
Cancer Cell Int ; 24(1): 134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622617

RESUMO

Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.

2.
Food Chem ; 449: 139316, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615633

RESUMO

In this work, the perovskite fluorescent nanocrystals (CsPbBr3) were successfully synthesized and wrapped with SiO2 shell, utilized for the assembly of solid-state detection strip capable of conveniently and specifically detection of aflatoxin B1 (AFB1). The SiO2 coating aimed to enhance the stability of CsPbBr3 nanocrystals. The resulting CsPbBr3@SiO2 material exhibited remarkable fluorescence properties, and further self-assembled onto solid-state plate, generating AFB1-specific quenched fluorescence at a specific wavelength of 515 nm. When combined with the capture of AFB1 by magnetic nanoparticles conjugated with aptamers (MNPs-Apt), it was achieved the good separation and specific detection of AFB1 toxin in food matrices. The constructed fluorescent solid-state detection strip based on CsPbBr3@SiO2 exhibited good response to AFB1 toxin within a linear range of 0.1-100 ng mL-1 and an impressive detection limit as low as 0.053 ng mL-1. This presents a new strategy for the rapid screening and convenient detection of highly toxic AFB1.

3.
Mol Carcinog ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629424

RESUMO

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.

4.
Anal Chem ; 96(15): 5887-5896, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567874

RESUMO

Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.


Assuntos
Biomimética , Polímeros de Fluorcarboneto , Polivinil , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Microcistinas/análise , Toxinas Marinhas
5.
Obes Facts ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569473

RESUMO

INTRODUCTION: Medication-overuse headache (MOH) is a secondary chronic headache disorder that occurs in individuals with a pre-existing primary headache disorder, particularly migraine disorder. Obesity is often combined with chronic daily headaches and is considered a risk factor for the transformation of episodic headaches into chronic headaches. However, the association between obesity and MOH among individuals with migraine has rarely been studied. The present study explored the association between body mass index (BMI) and MOH in people living with migraine. METHODS: This cross-sectional study is a secondary analysis of data from the Survey of Fibromyalgia Comorbidity with Headache study. Migraine and MOH were diagnosed using the criteria of the International Classification of Headache Disorders, 3rd edition. BMI (kg/m2) is calculated by dividing the weight (kg) by the square of the height (m). Multivariable logistic regression analysis was used to evaluate the association between BMI and MOH. RESULTS: A total of 2,251 individuals with migraine were included, of whom 8.7% (195/2,251) had a concomitant MOH. Multivariable logistic regression analysis, adjusted for age, sex, education level, headache duration, pain intensity, headache family history, chronic migraine, depression, anxiety, insomnia, and fibromyalgia, demonstrated there was an association between BMI (odds ratio [OR], 1.05; 95% confidence interval [CI], 1.01-1.11; P = 0.031) and MOH. The results remained when the BMI was transformed into a category. Compared to individuals with Q2 (18.5 kg/m2 ≤ BMI ≤ 23.9 kg/m2), those with Q4 (BMI ≥ 28 kg/m2) had an adjusted OR for MOH of 1.81 (95% CI, 1.04-3.17; P = 0.037). In the subgroup analyses, BMI was associated with MOH among aged more than 50 years (OR, 1.13; 95%, 1.03-1.24), less than high school (OR, 1.08; 95%, 1.01-1.15), without depression (OR, 1.06; 95%, 1.01-1.12), and without anxiety (OR, 1.06; 95%, 1.01-1.12). An association between BMI and MOH was found in a sensitivity analysis that BMI was classified into four categories according to the World Health Organization guidelines. CONCLUSION: In this cross-sectional study, BMI was associated with MOH in Chinese individuals with migraine.

6.
Am J Hematol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572662

RESUMO

Hyperleukocytosis is an emergency of acute leukemia leading to blood hyperviscosity, potentially resulting in life-threatening microvascular obstruction, or leukostasis. Due to the high number of red cells in the circulation, hematocrit/hemoglobin levels (Hct/Hgb) are major drivers of blood viscosity, but how Hct/Hgb mediates hyperviscosity in acute leukemia remains unknown. In vivo hemorheological studies are difficult to conduct and interpret due to issues related to visualizing and manipulating the microvasculature. To that end, a multi-vessel microfluidic device recapitulating the size-scale and geometry of the microvasculature was designed to investigate how Hct/Hgb interacts with acute leukemia to induce "in vitro" leukostasis. Using patient samples and cell lines, the degree of leukostasis was different among leukemia immunophenotypes with respect to white blood cell (WBC) count and Hct/Hgb. Among lymphoid immunophenotypes, severe anemia is protective against in vitro leukostasis and Hct/Hgb thresholds became apparent above which in vitro leukostasis significantly increased, to a greater extent with B-cell acute lymphoblastic leukemia (ALL) versus T-cell ALL. In vitro leukostasis in acute myeloid leukemia was primarily driven by WBC with little interaction with Hct/Hgb. This sets the stage for prospective clinical studies assessing how red cell transfusion may affect leukostasis risk in immunophenotypically different acute leukemia patients.

7.
Cancer Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566528

RESUMO

Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.

8.
Sci Total Environ ; 927: 172309, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599408

RESUMO

The application of molecularly imprinted material (MIM) is widely employed as a material for removing phenolic pollutants from the water environment, owing to its exceptional capacity for selective adsorption and high sensitivity. In this paper, the preparation principle, bonding types, and preparation methods of MIM have been comprehensively introduced. Meanwhile, according to the binding type of MIM with phenolic pollutants, three categories of hydroxyl bonding, hydroxyl carboxyl bonding, and hydroxyl nitro bonding were carried out to explain its application to phenolic pollutants. Strategies for addressing the challenges of selective instability, high regeneration costs, and template leakage in MIM applications were summarized. These strategies encompassed the introduction of superior carriers, enhancements in preparation processes, and the utilization of molecular dynamics simulation-assisted technology. Finally, the prospects in the three aspects of material preparation, process coupling, and recycling. In summary, this paper has demonstrated the potential of utilizing MIM for the selective treatment of phenolic pollutants from the water environment.

9.
J Med Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38596897

RESUMO

Cefiderocol is the first approved catechol-conjugated cephalosporin against multidrug-resistant Gram-negative bacteria, while its application was limited by poor chemical stability associated with the pyrrolidinium linker, moderate potency against Klebsiella pneumoniae and Acinetobacter baumannii, intricate procedures for salt preparation, and potential hypersensitivity. To address these issues, a series of novel catechol-conjugated derivatives were designed, synthesized, and evaluated. Extensive structure-activity relationships and structure-metabolism relationships (SMR) were conducted, leading to the discovery of a promising compound 86b (Code no. YFJ-36) with a new thioether linker. 86b exhibited superior and broad-spectrum in vitro antibacterial activity, especially against A. baumannii and K. pneumoniae, compared with cefiderocol. Potent in vivo efficacy was observed in a murine systemic infection model. Furthermore, the physicochemical stability of 86b in fluid medium at pH 6-8 was enhanced. 86b also reduced potential the risk of allergy owing to the quaternary ammonium linker. The improved properties of 86b supported its further research and development.

10.
Front Psychol ; 15: 1307776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577119

RESUMO

Background: In China, most of the citizens experienced SARS-CoV-2 infection since the end of 2022. The Coronavirus disease 2019 (COVID-19) pandemic affected people's physical health and also had a significant impact on mental well-being. The present study aims to discover if the experience of SARS-CoV-2 infection influences patients' anxiety toward third molar surgery in the Chinese population. Materials and methods: The present study took the form of a questionnaire survey. From January 1, 2023, to June 30, 2023, patients who went to the Stomatology Center of China-Japan Friendship Hospital (Beijing, China) for the third molar extraction were included according to the inclusion criteria. The information on COVID-19 infection and the Modified Dental Anxiety Scale (MDAS) was collected. The software SPSS 22.0 was used for the statistical analyses. Results: A total of 574 survey results were harvested in the present study. The infection rate of COVID-19 was 86.6% (p > 0.05). The Average MDAS scores between patients who had been infected with COVID-19 and patients who were never infected were not significantly different (11.65 ± 4.41 vs. 11.42 ± 4.41, p > 0.05). The subgroup analysis was conducted according to the length of time after the recovery of COVID-19 (Model 1), and the highest temperature during the infection (Model 2). In Model 1 and Model 2, the one-way ANOVA test did not find statistical significance between the groups (Model 1 p = 0.114; Model 2 p = 0.481). The MDAS scores in female patients were significantly higher than in male patients (12.29 ± 4.53 vs. 9.91 ± 3.80, p < 0.001). Patients who extracted double teeth got significantly higher MDAS scores than those who extracted single teeth before the surgery (12.03 ± 4.74 vs. 11.24 ± 4.18, p = 0.037). Conclusion: The present study did not establish a significant impact of SARS-CoV-2 infection on the anxiety levels associated with third molar surgery among Chinese patients. The potential long-term biopsychological effects of the virus warrant further investigation.

11.
Nefrología (Madrid) ; 44(2): 180-193, Mar-Abr. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-231568

RESUMO

Background: Contrast agents can directly or indirectly induce renal tubular ischemia and hypoxic damage. Given that cobalt chloride (CoCl2) can protect renal tubules, the protective effect and potential mechanism of action of CoCl2 on contrast-induced nephropathy (CIN) warrant investigation. Methods: A CIN mouse model was established to determine the protective effect of CoCl2 on renal injury in vivo. Then, TMT-based proteomics was performed to determine the differentially expressed proteins (DEPs), following which, enrichment analyses of gene ontology and the KEGG pathway were performed. In vitro, a CIN model was constructed with renal tubular epithelial cells (HK-2) to determine the effect of CoCl2 on potential targets and the role of the key protein identified from the in vivo experiments. Results: CoCl2 treatment decreased the levels of BUN and serum creatinine (sCr), while increasing the levels of urea and creatinine (Cr) in the urine of mice after CIN injury. Damage to the renal tubules in the CoCl2 treatment group was significantly less than in the CIN model group. We identified 79 DEPs after treating the in vivo model with CoCl2, and frequently observed ferroptosis-related GO and KEGG pathway terms. Of these, Hp (haptoglobin) was selected and found to have a strong renoprotective effect, even though its expression level in kidney tissue decreased after CoCl2 treatment. In HK-2 cells, overexpression of Hp reduced the ferroptosis caused by erastin, while knocking down Hp negated the attenuation effect of CoCl2 on HK-2 cell ferroptosis. Conclusion: CoCl2 attenuated kidney damage in the CIN model, and this effect was associated with the decrease in ferroptosis mediated by Hp.(AU)


Antecedentes: Los agentes de contraste pueden inducir isquemia tubular renal y daño hipóxico de manera directa o indirecta. Dado que el cloruro de cobalto (CoCl2) puede proteger los túbulos renales, el efecto protector y el mecanismo de acción potencial de CoCl2 en la nefropatía inducida por contraste (NIC) merecen ser investigados. Métodos: Se estableció un modelo de NIC en ratones para determinar el efecto protector de CoCl2 en la nefropatía in vivo. Seguidamente, se realizó un análisis proteómico por TMT para determinar las proteínas diferencialmente expresadas (DEP) y, a continuación, un análisis de enriquecimiento de ontología genética y vía KEGG. In vitro, se construyó un modelo NIC en células epiteliales de túbulos renales (HK-2) para determinar el efecto de CoCl2 en los objetivos potenciales y el rol de la proteína clave identificada en los experimentos in vivo. Resultados: El tratamiento con CoCl2 redujo los niveles de BUN y de creatinina sérica e incrementó, a la vez, los de urea y creatinina en la orina de los ratones, tras la lesión NIC. El daño a los túbulos renales en el grupo de tratamiento con CoCl2 fue significativamente menor que en el grupo de modelo NIC. Identificamos 79 DEP tras el tratamiento en el modelo in vivo con CoCl2 y observamos con frecuencia ontología genética relacionada con ferroptosis y términos de vías KEGG. De ellos, se seleccionó la haptoglobina (Hp) y se encontró que tenía un fuerte efecto renoprotector, aun cuando su nivel de expresión en el tejido renal se redujo tras el tratamiento con CoCl2. En las células HK-2, la sobreexpresión de Hp redujo la ferroptosis causada por erastina, a pesar de que el descenso de Hp negó el efecto atenuador de CoCl2 en la ferroptosis de las células HK-2. Conclusión: El CoCl2 atenuó el daño renal en el modelo NIC y se asoció este efecto al descenso de ferroptosis mediada por Hp.(AU)


Assuntos
Animais , Ratos , Nefropatias , Nefropatias/induzido quimicamente , Nefrologia
12.
ACS Appl Mater Interfaces ; 16(15): 18503-18521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570902

RESUMO

Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.


Assuntos
Osteogênese , Titânio , Corrosão , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Materiais Biocompatíveis , Ligas/química , Estresse Oxidativo , Propriedades de Superfície , Teste de Materiais
13.
CRISPR J ; 7(2): 100-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579141

RESUMO

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Virulência , Edição de Genes , Expressão Gênica , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
14.
Forensic Toxicol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642241

RESUMO

PURPOSE: A rapid and reliable method was developed and validated for the simultaneous analysis of 52 antibiotics (cephalosporins, penicillins, carbapenems, lincosamides, quinolones, nitroimidazoles, macrolides, sulfonamides, tetracyclines, glycopeptide) in urine and whole blood by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). METHOD: Analytes were extracted by dilution or protein precipitation and analyzed on an Agilent 1260 HPLC system coupled to an Agilent 6470 Triple Quadrupole Mass Spectrometer. RESULTS: The method attended method validation criteria. The limits of detection were equal or lower than 2.0 ng/mL, whereas the limits of quantification ranged from 0.1 to 10.0 ng/mL, from 0.1 to 5.0 ng/mL, in urine and whole blood, respectively. For all analytes, the bias and intra- and inter-day precision values were less than 14.7%. The ranges of recovery values of all antibiotics were 76.5-124.5% in whole blood and 76.3-121.8% in urine, values of the effects were lower than 25% in two matrices. No evidence of carryover was observed. The study of sample stability showed that almost all analytes were stable at 24 °C for 24 h, all analytes were stable at -20 °C for 14 days and at -80 °C for 30 days. Freeze-thaw cycles stability showed that antibiotics were stable except for imipenem. Autosampler stability study showed that all analytes were stable for 24 h, except for imipenem and amoxicillin. Applicability was proven by analyzing authentic whole blood (n = 86) and urine (n = 79) samples from patients under antibiotics treatment. Therefore, this method was applied to the analysis 3 forensic allergy cases, which were positive for at least one analyte. CONCLUSIONS: A simple, sensitive and high-throughput method for the simultaneous determination of different classes of antibiotics in urine and whole blood samples was developed and applied. This sensitive method was successfully applied to forensic cases.

15.
Front Neurosci ; 18: 1363288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601089

RESUMO

Background: Automatic segmentation of corneal stromal cells can assist ophthalmologists to detect abnormal morphology in confocal microscopy images, thereby assessing the virus infection or conical mutation of corneas, and avoiding irreversible pathological damage. However, the corneal stromal cells often suffer from uneven illumination and disordered vascular occlusion, resulting in inaccurate segmentation. Methods: In response to these challenges, this study proposes a novel approach: a nnUNet and nested Transformer-based network integrated with dual high-order channel attention, named U-NTCA. Unlike nnUNet, this architecture allows for the recursive transmission of crucial contextual features and direct interaction of features across layers to improve the accuracy of cell recognition in low-quality regions. The proposed methodology involves multiple steps. Firstly, three underlying features with the same channel number are sent into an attention channel named gnConv to facilitate higher-order interaction of local context. Secondly, we leverage different layers in U-Net to integrate Transformer nested with gnConv, and concatenate multiple Transformers to transmit multi-scale features in a bottom-up manner. We encode the downsampling features, corresponding upsampling features, and low-level feature information transmitted from lower layers to model potential correlations between features of varying sizes and resolutions. These multi-scale features play a pivotal role in refining the position information and morphological details of the current layer through recursive transmission. Results: Experimental results on a clinical dataset including 136 images show that the proposed method achieves competitive performance with a Dice score of 82.72% and an AUC (Area Under Curve) of 90.92%, which are higher than the performance of nnUNet. Conclusion: The experimental results indicate that our model provides a cost-effective and high-precision segmentation solution for corneal stromal cells, particularly in challenging image scenarios.

16.
J Med Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598362

RESUMO

G0775, an arylomycin-type SPase I inhibitor that is being evaluated in a preclinical study, exhibited potent antibacterial activities against some Gram-negative bacteria but meanwhile suffered defects such as a narrow antibacterial spectrum and poor pharmacokinetic properties. Herein, systematic structural modifications were carried out, including optimization of the macrocyclic skeleton, warheads, and lipophilic regions. The optimization culminated in the discovery of 138f, which showed more potent activity and a broader spectrum against clinically isolated carbapenem-resistant Gram-negative bacteria, especially against Acinetobacter baumannii and Pseudomonas aeruginosa. 162, the free amine of 138f, exhibited an excellent pharmacokinetic profile in rats. In a neutropenic mouse thigh model of infection with multidrug-resistant P. aeruginosa, the potent in vivo antibacterial efficacy of 162 was confirmed and superior to that of G0775 (3.5-log decrease vs 1.1-log decrease in colony-forming unit (CFU)). These results support 162 as a potential antimicrobial agent for further research.

17.
J Immunol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598411

RESUMO

Ag-specific effector CD4+ T cells play a crucial role in defending against exogenous pathogens. However, the mechanisms governing the differentiation and function of IFN-γ-producing effector CD4+ Th1 cells in immune responses remain largely unknown. In this study, we elucidated the pivotal role of zinc finger protein 335 (Zfp335) in regulating effector Th1 cell differentiation and survival during acute bacterial infection. Mice with Zfp335 knockout in OT-II cells exhibited impaired Ag-specific CD4+ T cell expansion accompanied by a significant reduction in resistance to Listeria infection. Furthermore, Zfp335 deficiency restricted the effector CD4+ Th1 cell population and compromised their survival upon Listeria challenge. The expression of T-bet and IFN-γ was accordingly decreased in Zfp335-deficient Th1 cells. Mechanistically, Zfp335 directly bound to the promoter region of the Lmna gene and regulated its expression. Overexpression of Lmna was able to rescue the survival and function of Zfp335-deficient effector Th1 cells. Therefore, our study provides novel insights into the mechanisms governing effector Th1 cell differentiation and survival during acute infection.

18.
Talanta ; 274: 125995, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38599115

RESUMO

Three-dimensional (3D) porous metal oxide nanomaterials with controllable morphology and well-defined pore size have attracted extensive attention in the field of gas sensing. Herein, hierarchically porous ZnO-450 was obtained simply by annealing Zeolitic Imidazolate Frameworks (ZIF-90) microcrystals at an optimal temperature of 450 °C, and the effect of annealing temperature on the formation of porous nanostructure was discussed. Then the as-obtained ZnO-450 was employed as sensing materials to construct a Micro-Electro-Mechanical System (MEMS) gas sensor for detecting NO2. The MEMS sensor based on ZnO-450 displays the excellent gas-sensing performances at a lower working temperature (190 °C), such as high response value (242.18% @ 10 ppm), fast response/recovery time (9/26 s) and ultralow limit of detection (35 ppb). The ZnO-450 sensor shows better sensing performance for NO2 detection than ZnO-based composites materials or commercial ZnO nanoparticles (NPs), which are attributed to its unique hierarchically structures with high porosity and larger surface area. This ZIFs driven strategy can be expected to pave a new pathway for the design of high-performance NO2 sensors.

20.
Mol Cancer ; 23(1): 70, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576002

RESUMO

BACKGROUND: Cellular senescence frequently occurs during anti-cancer treatment, and persistent senescent tumor cells (STCs) unfavorably promote tumor progression through paracrine secretion of the senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) have recently emerged as a novel component of the SASP and primarily mediate the tumor-promoting effect of the SASP. Of note, the potential effect of EVs released from STCs on tumor progression remains largely unknown. METHODS: We collected tumor tissues from two cohorts of colorectal cancer (CRC) patients to examine the expression of p16, p21, and SERPINE1 before and after anti-cancer treatment. Cohort 1 included 22 patients with locally advanced rectal cancer (LARC) who received neoadjuvant therapy before surgical resection. Cohort 2 included 30 patients with metastatic CRC (mCRC) who received first-line irinotecan-contained treatment. CCK-8, transwell, wound-healing assay, and tumor xenograft experiments were carried out to determine the impacts of EVs released from STCs on CRC progression in vitro and in vivo. Quantitative proteomic analysis was applied to identify protein cargo inside EVs secreted from STCs. Immunoprecipitation and mass spectrometer identification were utilized to explore the binding partners of SERPINE1. The interaction of SERPINE1 with p65 was verified by co-immunoprecipitation, and their co-localization was confirmed by immunofluorescence. RESULTS: Chemotherapeutic agents and irradiation could potently induce senescence in CRC cells in vitro and in human CRC tissues. The more significant elevation of p16 and p21 expression in patients after anti-cancer treatment displayed shorter disease-free survival (DFS) for LARC or progression-free survival (PFS) for mCRC. We observed that compared to non-STCs, STCs released an increased number of EVs enriched in SERPINE1, which further promoted the progression of recipient cancer cells. Targeting SERPINE1 with a specific inhibitor, tiplaxtinin, markedly attenuated the tumor-promoting effect of STCs-derived EVs. Additionally, the patients with greater increment of SERPINE1 expression after anti-cancer treatment had shorter DFS for LARC or PFS for mCRC. Mechanistically, SERPINE1 bound to p65, promoting its nuclear translocation and subsequently activating the NF-κB signaling pathway. CONCLUSIONS: We provide the in vivo evidence of the clinical prognostic implications of therapy-induced senescence. Our results revealed that STCs were responsible for CRC progression by producing large amounts of EVs enriched in SERPINE1. These findings further confirm the crucial role of therapy-induced senescence in tumor progression and offer a potential therapeutic strategy for CRC treatment.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Neoplasias Retais , Humanos , NF-kappa B/metabolismo , Proteômica , Transdução de Sinais , Vesículas Extracelulares/metabolismo , Neoplasias Retais/metabolismo , Senescência Celular , Neoplasias Colorretais/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...